13 research outputs found

    Explaining the elongated shape of 'Oumuamua by the Eikonal abrasion model

    Get PDF
    The photometry of the minor body with extrasolar origin (1I/2017 U1) 'Oumuamua revealed an unprecedented shape: Meech et al. (2017) reported a shape elongation b/a close to 1/10, which calls for theoretical explanation. Here we show that the abrasion of a primordial asteroid by a huge number of tiny particles ultimately leads to such elongated shape. The model (called the Eikonal equation) predicting this outcome was already suggested in Domokos et al. (2009) to play an important role in the evolution of asteroid shapes.Comment: Accepted by the Research Notes of the AA

    Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations

    Get PDF
    Somatic insertions/deletions in the calreticulin gene have recently been discovered to be causative alterations in myeloproliferative neoplasms. A combination of qualitative and quantitative allele-specific polymerase chain reaction, fragment-sizing, high resolution melting and Sanger-sequencing was applied for the detection of three driver mutations (in Janus kinase 2, calreticulin and myeloproliferative leukemia virus oncogene genes) in 289 cases of essential thrombocythemia and 99 cases of primary myelofibrosis. In essential thrombocythemia, 154 (53%) Janus kinase 2 V617F, 96 (33%) calreticulin, 9 (3%) myeloproliferative leukemia virus oncogene gene mutation-positive and 30 triple-negative (11%) cases were identified, while in primary myelofibrosis 56 (57%) Janus kinase 2 V617F, 25 (25%) calreticulin, 7 (7%) myeloproliferative leukemia virus oncogene gene mutation-positive and 11 (11%) triple-negative cases were identified. Patients positive for the calreticulin mutation were younger and had higher platelet counts compared to Janus kinase 2 mutation-positive counterparts. Calreticulin mutation-positive patients with essential thrombocythemia showed a lower risk of developing venous thrombosis, but no difference in overall survival. Calreticulin mutation-positive patients with primary myelofibrosis had a better overall survival compared to that of the Janus kinase 2 mutation-positive (P=0.04) or triple-negative cases (P=0.01). Type 2 calreticulin mutation occurred more frequently in essential thrombocythemia than in primary myelofibrosis (P=0.049). In essential thrombocythemia, the calreticulin mutational load was higher than the Janus kinase 2 mutational load (P<0.001), and increased gradually in advanced stages. Calreticulin mutational load influenced blood counts even at the time point of diagnosis in essential thrombocythemia. We confirm that calreticulin mutation is associated with distinct clinical characteristics and explored relationships between mutation type, load and clinical outcome

    A discrete random model describing bedrock profile abrasion

    Full text link
    We use a simple, collision-based, discrete, random abrasion model to compute the profiles for the stoss faces in a bedrock abrasion process. The model is the discrete equivalent of the generalized version of a classical, collision based model of abrasion. Three control parameters (which describe the average size of the colliding objects, the expected direction of the impacts and the average volume removed from the body due to one collision) are sufficient for realistic predictions. Our computations show the robust emergence of steady state shapes, both the geometry and the time evolution of which shows good quantitative agreement with laboratory experiments.Comment: 9 pages, 6 figure

    Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters

    Full text link
    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (e.g. ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light scattering analysis and flow cytometry, for the first time we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematological disorders, infections and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs, and contribute to correct the clinical laboratory assessment of the presence and biological functions of MPs in health and disease

    Complete genes may pass from food to human blood

    Get PDF
    Our bloodstream is considered to be an environment well separated from the outside world and the digestive tract. According to the standard paradigm large macromolecules consumed with food cannot pass directly to the circulatory system. During digestion proteins and DNA are thought to be degraded into small constituents, amino acids and nucleic acids, respectively, and then absorbed by a complex active process and distributed to various parts of the body through the circulation system. Here, based on the analysis of over 1000 human samples from four independent studies, we report evidence that meal-derived DNA fragments which are large enough to carry complete genes can avoid degradation and through an unknown mechanism enter the human circulation system. In one of the blood samples the relative concentration of plant DNA is higher than the human DNA. The plant DNA concentration shows a surprisingly precise log-normal distribution in the plasma samples while non-plasma (cord blood) control sample was found to be free of plant DNA
    corecore